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Abstract 

 

An intriguing characteristic of Australian energy market policymaking is the almost 

exclusive focus on spot market dynamics. The policy development cycle displays a 

virtual disregard for, and of, power system financial markets.  The irony is that 

forward contract prices form the defining wholesale price input to end-user consumer 

tariffs.  In this article, the impacts of a wide-ranging program of government-initiated 

CfDs on power system financial markets are analysed. Government-initiated CfDs 

are highly effective in correcting market failures, but they need to be used judiciously 

because – while they add to demand-side liquidity, they simultaneously extract 

supply-side forward contract market liquidity.  Consequently, when used en-masse in 

loosely interconnected energy-only markets, CfDs have pro-competitive effects in the 

spot market by introducing ‘quasi-market participants’ but damage power system 

financial markets via the loss of liquidity.  Power system modelling in this article 

demonstrates that a wide-ranging policy of government-initiated CfDs can produce 

shortages of ‘primary issuance’ hedge contact supply.  This is far more than theory.  

In the South Australian region of the NEM, shortages of primary-issuance hedge 

contract supply have arisen through renewable entry and coal plant exit.  Hedge 

shortages have had the effect of raising forward contract price premiums above 

efficient levels, needlessly forced the most price-elastic (Industrial/Manufacturing) 

customers into accepting unwanted spot market exposures, and unintentionally 

foreclosed non-integrated (2nd tier) energy retailers, all of which ultimately harms 

consumer welfare. CfDs have a targeted role to play in energy markets by correcting 

market failure; but broad-based market mechanisms are preferred. 

   

Keywords:  Variable Renewable Energy, Contracts-for-Differences, Hedge 

Contracts.   

JEL Codes:  D52, D53, G12, L94 and Q40. 

 

1. Introduction 

Australia’s National Electricity Market (NEM) is an energy-only gross pool in which all 

generators bid into a central platform and are dispatched under a uniform first-price auction 

clearing mechanism.  Being a mandatory gross pool, all generators must sell their output into 

the spot market, and energy retailers must buy all of their load from the spot market. 

 

The volatility that accompanies organised electricity spot markets, particularly those with a 

high VoLL (NEM Value of Lost Load = AUD1 $14,500/MWh) creates the conditions 

necessary for the emergence of, and active trade in, forward contracts.  While there is an 

almost endless array of forward derivative instruments, the three primary contract types 

traded are fixed price swaps, $300 caps and increasingly, plant-specific Power Purchase 

Agreements (PPAs).  Swaps and caps are traded both on-exchange and over-the-counter, and 

generally over a 1-3 year tenor with NEM forward market liquidity historically running at 

~300% of physical trade – meaning that by the time each MWh is delivered it has, on 

average, been bought and sold 3 times over.  There is of course considerable variation in 

liquidity by season, and by region.  PPAs on the other hand tend to be long-dated (10-15 

year), structured as run-of-plant instruments, and designed specifically to underwrite the entry 

of variable renewable plant (i.e. wind or utility-scale solar PV).   

                                                 
 Professor of Economics, Griffith Business School, Griffith University.  
 Associate, Energy Policy Research Group, University of Cambridge. 
1 All figures presented in Australian Dollars.  At the time of writing, AUD/US ~ 0.72 and AUD/GBP ~ 0.57. 
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An intriguing characteristic of Australian energy market policymaking, and of NEM energy 

market research, is the almost exclusive focus on what can be loosely described as the spot 

market; viz. plant investment, supply, demand and spot prices.  With the noteable exception 

of the National Energy Guarantee (which was grounded in the central role that the market for 

forward contracts plays), policy development displays a virtual disregard for, and of, the 

forward market.  The irony is that forward contract prices form the defining wholesale price 

input to consumer tariffs. 

 

At one level, a focus on the spot market and spot prices is understandable.  Conditions in the 

physical system are enormously important given the necessity to match supply and demand in 

real-time, and the essential service nature of electricity supply.  Spot markets are also 

comparatively easy to understand due to their transparency and link to real-time supply-

demand dynamics.  In contrast, the exchange-traded futures market and OTC derivative 

markets are little-understood, the array of derivative instruments is often described to the 

author as ‘horribly complex’, and while driving price transparency – forward market activity 

is ultimately characterised by anonymity and secrecy.  To quote one of Australia’s senior 

policymakers, ‘you need an elementary understanding of economic principles to understand 

the spot market, and a Masters Degree in Finance to understand the derivatives market’.    

  

But because consumer tariffs are derived from forward prices, policymakers cannot afford to 

ignore the potential unintended consequences of policy on the proper functioning of the 

power system’s financial market.  Poorly functioning forward markets increase operational 

risks facing incumbent market participants, produce excess contract price premiums, and can 

drive competition and investment activity below efficient levels – all of which may ultimately 

harm consumer welfare.  The cessation of contract activity can adversely affect supply 

dynamics (i.e. barrier to entry or entry lags), and in the long run produce large cyclical swings 

in consumer prices. The political economy of large cyclical price swings generally invites 

further policy intervention, which can exacerbate investment continuity and consumer 

pricing.   

 

Australia’s NEM has experienced cyclical price swings due to a policy-induced 

malfunctioning of the forward market for contracts.  For example, the Commonwealth 

Government’s decision to review the Renewable Energy Target in early-2014, no matter how 

well intentioned, produced sufficient policy uncertainty as to result in the transient cessation 

of PPA activity.  PPAs are an essential ingredient to Variable Renewable Energy (VRE) 

project commitment.  Investment commitment data in Figure 1 clearly demonstrates this; 

notice the virtual blackout of investment commitments when the Renewable Target was 

subject of a formal review in 2014. 

 Investment flows in VRE plant 2012-2018 ($M and MW) 

 
Source: BNEF 
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Given development and construction lags of 2-3 years, the unexpected downswing in VRE 

contract activity in 2014 and its adverse impact on investment flows meant that there was 

virtually no new renewable plant entering the NEM in 2016 and 2017.  This relative 

deficiency of VRE plant entry against the Renewable Energy Target coincided with the 

sudden exit of Northern and Hazelwood coal power stations. Spot and forward electricity 

prices spiked to higher levels than would have otherwise been the case, and produced a 

simultaneous shortage in Renewable Certificates.  Apart from harming consumer welfare, the 

elevated bundled price of electricity and renewable certificates, in my view, resulted in a 

period of VRE plant over-investment, tight construction market conditions, and elevated 

construction costs and premiums.   

 

The implications of policy changes on forward markets matter, because there is a circular 

reasoning vis-à-vis spot and forward contract market prices, and consumer tariffs. 

 

One response to Commonwealth climate change policy discontinuity and a lack of forward 

market liquidity for VRE plant entry has been the emergence of government-initiated 

Contracts-for-Differences (CfDs) undertaken at the State-level – first by the Australian 

Capital Territory (wind, 2015), then Queensland (solar PV, 2016), South Australia (semi-CfD 

for battery storage, 2017) and more recently Victoria (wind and solar, 2018).   

 

Government-initiated CfDs are an interesting development (Wild, 2017).  CfDs can play a 

legitimate role in dealing with energy market failures, specifically relating to missing and 

incomplete markets.  As a policy mechanism they represent a means by which to deliver 

generation plant capacity that, for whatever reason, the market is failing to deliver.  

Government-initiated CfDs have the effect of diversify demand-side forward market liquidity 

and in doing so bring about certain short run benefits.  Holding all else constant, CfDs also 

facilitate state development, and by adding new supply can reduce spot prices and CO2 

emissions. 

 

But the use of government-initiated CfDs needs to be tempered by their adverse impacts on 

the proper functioning of the broader energy market.  They should be used judiciously 

because, while they have the effect of diversifying demand-side forward contract liquidity, 

government CfDs simultaneously extract from supply-side contract market liquidity.  As 

power system modelling later in this article demonstrates, undertaken at-scale, government-

initiated CfDs have the potential to damage forward markets.  Damaging liquidity can 

produce anti-competitive results by unintentionally foreclosing non-integrated (2nd tier) 

energy retailers, raise contract price premiums above the efficient level, needlessly force 

price-elastic Industrial (manufacturing) customers into unwanted spot market exposures, and 

harm overall consumer welfare.   

 

The purpose of this article is to review the use and implications of CfDs on energy markets 

and is structured as follows.  Section 2 provides a brief review of literature.  Section 3 reviews 

government-initiated CfDs in practice.  Section 4 introduces a partial dynamic equilibrium 

model of the NEM.  Section 5 reviews Model results and Section 6 provides an assessment of 

policy implications.  Conclusions follow.  

 

2. Review of Literature   

Hirth et al. (2016) noted that energy markets are never complete or free of market failures. 

One of the more prominent failures inherent in energy-only markets is their seeming inability 

to deliver the requisite mix of derivative instruments required to facilitate efficient and timely 

plant entry (Hansen, 2004; Chao, Oren and Wilson, 2005; Finon, 2008; Meade and O’Connor, 

2009; Finon, 2011; Meyer, 2012; Nelson & Simshauser, 2013; Newbery, 2015, 2016; Grubb 

& Newbery 2018).   
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Long-dated contracts are a general pre-condition for the timely entry of project financed 

plant, and while Australia’s NEM is noted for favourable forward market liquidity2, the 

majority of activity spans only 1-3 years – well short of contracts that deliver optimal 

financing and facilitate timely and efficient ex-ante investment commitment.  Forward 

markets have failed to calibrate beyond 3 years because competitive retailers cannot afford to 

hold hedge portfolios dominated by inflexible long-dated contracts when large components of 

their customer book switch supplier every 2-3 years (Newbery, 2006; Chester, 2006; 

Anderson et al. 2007;  Howell, Meade & O’Connor, 20103). 

 

In the context of the energy industry CfDs (for transmission congestion) can be traced at least 

as far back as Hogan (1992).  Government-initiated CfD’s have been progressively gaining 

prominence amongst policymakers more recently (UK Government, 2015; Victoria, 2015; 

ACT, 2016; QRET Expert Panel, 2016; Commonwealth of Australia, 2018) and amongst 

academics (see Kozlov, 2014; Bunn & Yusupov, 2015; Onifade, 2016; Wild, 2017; 

Simshauser, 2018).   

 

Government-initiated CfDs have generally arisen due to a combination of missing or 

incomplete markets, and form one of a number of policy mechanisms used by governments to 

meet a decarbonisation objective or reliability constraint (see for example Pollitt & Anaya, 

2016; Simshauser, 2018).  Typically, a government-initiated CfD will attempt to minimise the 

Levelised Cost of Electricity (LCoE) as a surrogate for maximising value to taxpayers.  At 

one level the use of LCoE as a prime metric is understandable because forecasting market 

outcomes 10-15 years in advance is notoriously difficult.  But as a stand-alone metric, LCoE 

is flawed because it treats technology output as homogeneous products as if governed by the 

law of one price (Joskow, 2011; Mills & Wiser, 2012; Edenhofer et al. 2013; Simshauser, 

2018).    That is, while the physical properties of electricity are largely homogeneous over 

space and time, from a market perspective there is rich price variation over time, space and 

lead time-to-delivery, making the traded commodity a heterogeneous good (Hirth et al. 

2016).4  The economic value of plant output is not identical and assuming otherwise 

introduces two biases; base plant is favoured over peak, and stochastic plant is favoured over 

dispatchable plant.   

 

In real-time, the law of one price applies; stochastic output from wind and solar are good 

substitutes for thermal generation.  However, each year there are 105,120 NEM dispatch 

intervals and associated spot prices (i.e. every 5 minutes) and when demand is higher than 

forecast, all else equal, dispatchable generators increase output and receive a higher average 

price.  Conversely, stochastic generators rarely reduce output in periods of oversupply, and 

hence sell disproportionately at lower prices (Hirth, 2013; Hirth et al. 2016; Simshauser, 

2018). 

 

Furthermore, as VRE technologies move from niche to material market shares, deployment 

success becomes a significant driver of market value which is amplified when thermal plant 

fails to exit (MacGill, 2010; Joskow 2011; Nicolosi, 2012; Mills & Wiser 2012; Hirth, 2013; 

Green & Staffell, 2016; Simshauser, 2018).   High levels of Variable Renewable Energy 

(VRE) shielded by CfDs and priority-dispatched will initially place downward pressure on 

price (see Nelson et al. 2012; Joskow, 2013; Newbery, 2015; Simshauser, 2018). Given 

negligible marginal running costs, these so-called merit-order effects arising from policy-

induced VRE plant entry became apparent in markets such as Germany as early as 2008 

(Sensfuβ et al. 2008) and had been prominent in the SA region of the NEM (Forrest and 

MacGill, 2013; Cludius et al. 2014; Bell et al. 2015; Bell et al. 2017).  Consequently, market 

values of incumbent VRE (and future) plant will be adversely affected from a stream 

                                                 
2 See also Simshauser et al. (2015, Appendix 3 and Figure C.1 on p.54). 
3 See also Green, 2006; Finon, 2008; Simshauser, 2010; Howell, Meade and O’Connor, 2010 
4 Heterogeneous goods satisfy three conditions; (1) an inability to arbitrage (i.e. storage is costly); (2) no single efficient 
technology exists (e.g. in electricity planning there is typically an efficient combination of base, intermediate and peak plant); 

and (3) non-horizontal supply costs (e.g. electricity merit-order supply curves are always upward sloping).  As Hirth et al. 2016, 

p.5) explain, storage links electricity in time, transmission links electricity in space and flexibility (i.e. balancing services) links 
electricity in lead-time. 
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continual entry through a combination of production ‘correlation effects’, ‘merit-order 

effects’ and ‘price-impression effects’ (Nicolosi, 2012; Hirth, 2013). However, such effects 

eventually unwind when thermal plant is forced to exit (Felder, 2011; Nelson et al. 2012).  

This set of market dynamics has implications for a wide-ranging program of government-

initiated CfDs. 

 

3. Government-initiated CfDs: motivation and application  

The policy objective of government-initiated CfDs is to introduce generation plant that energy 

markets are failing to deliver.  In this sense, CfDs have the effect of bringing forward future 

power projects to today, with the benefits, costs and risks of doing so allocated to taxpayers.   

 

 The policy motivation of CfDs 

There are many reasons why government intervention is legitimately required in energy 

markets.  As is well understood in economics, organised spot markets and their associated 

forward contract markets fail to internalise known externalities.  For example, energy-only 

spot markets may undervalue reserve capacity until it is actually required.  Energy markets 

also undervalue CO2 emissions and will therefore only be produced at the efficient level by 

chance.  And as with many markets, research and development is not valued; but this is 

compounded in energy markets because participants are unable to capture the benefits of a 

first-of-a-kind plant investment – in fact, the contrary is usually the case in that the market 

avoids costly mistakes of the first iteration of a new technology.  Absent some form of 

government intervention, R&D will be under-supplied by the market.  

 

Government-initiated CfDs can have the effect of “priming” a market by helping emerging 

technologies to overcome certain entry barriers.  The Queensland Government’s Solar150 

program in 2016 awarded CfDs to four solar PV projects totalling 150MW at a time when 

solar PV struggled to compete with wind.  The policy had the effect of kick-starting a wave of 

solar developments; by late-2018 a total of 1945MW of solar PV had been committed on-

market.  In South Australia, a policy to introduce a 100MW utility-scale battery for system 

stability similarly primed the market for storage – there are now 215MW of commissioned 

batteries, a further 155MW have reached financial close, and 1897MW under active 

development across Australia5.  In short, while there are many policy mechanisms available to 

remedy energy market failures, CfD’s are indeed a viable policy option.   

 

 How a CfD works, and why they work 

In the classic case, a CfD auction will specify a particular technology (e.g. solar PV), output 

or rated capacity (e.g. 100 MW) and timing for delivery (e.g. able to reach financial close 

within 6 months of being awarded a long-dated CfD).  The CfD is in turn a form of long-

dated fixed price contract, usually expressed in $/MWh.  In application, a CfD is a derivative 

instrument because payouts are referenced against spot prices.  In a two-way CfD with a 

strike price of say $65/MWh, the contracting government (i.e. taxpayers) will pay the 

difference to the renewable project proponent whenever spot prices fall below $65, and the 

renewable project proponent pays the government whenever spot prices are above $65.  CfDs 

are typically run-of-plant instruments such that difference payments only apply when the 

renewable plant is producing.  Absent material plant failure, in which case some form of 

liquidated damages may apply, all volume and price risk is effectively transferred to the 

contacting government (taxpayers). 

 

A government-initiated CfD overcomes missing and incomplete markets and crucially in the 

context of Australia, can successfully navigate carbon policy uncertainty because CfDs 

provide revenue certainty (i.e. virtual market immunity) to the power project owner.   

 

Finally, because power projects are capital-intensive, the cost of debt and equity capital is an 

important driver of overall plant unit costs ($/MWh).  The direct involvement of a 

government through long-dated CfDs greatly enhances the credit quality of power projects, 

                                                 
5 Source data from BNEF. 
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and this enables higher levels of debt, a lower cost of debt capital, and makes the task of 

equity capital raising easier (and in turn, at lower risk premiums).  Consequently, holding all 

other variables constant, by transferring the price, volume, policy and credit default risks of 

power projects to taxpayers, government-initiated CfDs are capable of producing a materially 

lower LCoE for entering projects.6   

 

 The impact of CfDs vs carbon pricing & renewable certificate markets 

CO2 emissions reduction policies ultimately seek to alter the plant stock in a way that reduces 

output from coal plant and increase output from renewable and cleaner (e.g. gas-fired) 

resources.  Regardless of the policy mechanism used (e.g. cap & trade Emissions Trading 

Scheme, Emissions Intensity Scheme, carbon tax, Portfolio Standard, Clean Energy Target or 

government-initiated CfD), wealth transfers amongst producers occur.  Carbon-intensive 

forms of generation are adversely affected, while low and zero emissions plant benefit from 

any explicit or implicit price on CO2 emissions. 

 

Government-initiated CfDs differ from broad-based market schemes (e.g. carbon prices or 

clean energy targets) because of the direct involvement of government in the transaction and 

the reallocation of market, credit and policy risks to taxpayers.  Project bankers and the credit 

committees of Banks, which allocate scarce debt capital, have a very strong preference for 

long-dated government-initiated CfDs because from a credit perspective, there is virtually no 

risk of default.  By contrast to conventional NEM-based Over-the-Counter market 

transactions, a government-initiated CfD re-orientates policy and credit risk away from 

demand-side energy market participants, and vests this with taxpayers.   

 

Original Equipment Manufacturers (i.e. wind turbine suppliers, solar panel suppliers) and 

renewable project developers also prefer government CfDs because of the certainty of MW 

capacity to be delivered – at least in theory.  

 

 A wide-ranging program of CfDs  

When deployed judiciously, the implications of CfDs are generally benign.  In the case of the 

Queensland Solar150 program for example, any distortionary impacts arising from 150MW 

(0.4 GWh) of solar-based CfDs in a 10,000MW (54,000GWh) regional market would be hard 

to detect.  Taxpayers have a collective financial exposure to CfDs that will ultimately prove to 

be out-of-the-money; but this needs to be balanced with other policy objectives (e.g. state 

development, subsequent economic and environmental benefits of the 1945MW of on-market 

solar PV projects that followed).  But what happens when CfDs are not used to ‘prime’ a 

market, but rather, are used to replace the market; that is, replace broad-based market 

mechanisms to drive non-trivial (and non-market-based) entry? 

 

Holding all else constant, so-called merit-order effects can be expected.  That is, adding more 

supply, renewable or non-renewable, will reduce wholesale prices.  But it will do this in the 

short- to medium run.  Because the purpose, and effect, of the entry of VRE plant at-scale is 

designed to replace coal plant output, it will inevitably do so.  Ultimately, the marginal coal 

plant will find it unprofitable, and will therefore exit.  At this point, prices can be expected to 

rebound – and in the context of the NEM this is more than a theoretical observation.  There is 

nothing inherently wrong with this policy objective, or the course of events that follows per 

se.  But government-initiated CfDs undertaken at-scale can adversely impact the efficiency of 

the market (as distinct from ‘priming’ a market) for three reasons.   

 

First, governments are remote from power system operations and power system contract and 

risk management requirements.  Government-initiated CfD auctions are therefore typically 

based on simplified metrics such as LCoE, or a discriminatory price benchmark to 

accommodate technological variation in production or cost.  But as the Literature Review in 

                                                 
6 Of course, power project experience curves are downward sloping with the general rule of thumb being that for each doubling 

of global installed capacity, technology costs will fall by 20%.  Consequently, delaying project commitment can result in lower 

prices.  Exchange rates influence imported equipment costs, and steady project commitment (i.e. avoiding boom-bust 
development cycles) can also reduce construction risk premiums. 
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Section 2 highlighted, LCoE is a flawed metric and an overreliance on it in CfD auctions risks 

introducing an inefficient pattern of plant entry in a way that on-market transactions would 

have avoided.  In contrast, broad-based market schemes like the National Energy Guarantee 

or a well-designed Clean Energy Target require market participants to focus not on the LCoE, 

but on the timing, location and market value of new plant output.   

 

Second, government-initiated CfDs introduce quasi-market participants that, through the 

design of the CfD, are almost completely sheltered from the NEM’s short and medium-run 

locational, spot and forward price signals – the primary signals relied upon by policymakers 

to the regulate system performance, system reliability, investment patterns and long run 

consumer prices.  In contrast, on-market transactions by profit-maximising firms forces 

market participants to assess the relative pattern of entry, locational considerations, and the 

risks of inadequate or excess entry relative to policy objectives (on the presumption that 

policy objectives exist in the first place).  Broad-based market schemes can therefore be 

expected to outperform a central buyer, and market schemes do this by accumulating a more 

optimal composition of assets and allocation of investment & market risks, reflecting the 

combination of physical power system requirements, policy-related constraints and the risk 

appetite of participants to the transaction. 

 

Third, and by far the most adverse implication of a non-trivial government-initiated CfD 

program is the potential to damage forward markets.  A wide-ranging policy of government-

initiated CfDs instruments that form a progressively larger share of a forward market will 

ultimately damage the primary-issuance of hedge contracts, and therefore market liquidity.  

Following an ‘initial loss’ of liquidity, the exit of proprietary traders will drive a ‘secondary 

loss’ of market depth and liquidity, which is capable of culminating in a severe structural 

shortage of hedge contracts (i.e liquidity dropping below 100%).  With demand for hedges 

exceeding supply, hedge contract premiums will be elevated, the most price-elastic 

(Industrial/manufacturing) customers will then be forced to accept some level of risky spot 

market exposure which invariably reduces manufacturing productivity, and in the final stages 

inadequate contract market liquidity may drive the exit of independent non-integrated 

retailers.  In short, a well-intentioned wide-ranging program of government-initiated CfDs can 

raise forward prices above the efficient level, unintentionally disrupt manufacturing 

productivity, foreclose retailers and replace a well-functioning forward market with quasi-

market participants who are indifferent to the outcomes facing market customers – all of 

which harms consumer welfare.  How these shortages emerge can be demonstrated 

quantitatively, and this forms the focus of Sections 4 and 5. 

 

4. NEMESYS-PF Model 

In order to analyse the impact of government-initiated CfDs on forward markets, the 

NEMESYS-PF Model has been used.  The model formally integrates a corporate & project 

finance model with a single-year dynamic partial equilibrium model of a template power 

system (see Simshauser, 2018).  The dynamic power system partial equilibrium model is 

essentially a security-constrained unit commitment model with 30-minute resolution and price 

formation based on a uniform, first price auction clearing mechanism.  As with Bushnell 

(2010) the model assumes perfect competition, transmission and ramp-rates, free entry and 

exit to install any combination of (indivisible) capacity that satisfies differentiable equilibrium 

conditions, with VRE output being exogenously determined (i.e. by way of policy).  And as 

with Hirth (2013) the focus of simulations is half-hour resolution over a single year.  Model 

outputs also include plant cost estimates for various generating technologies via a dynamic, 

multi-period post-tax discounted cash flow optimisation model which solves for multiple 

generating technologies, business combinations and revenue possibilities through 

simultaneous convergent price, debt-sizing, taxation and equity return variables.  These 

outputs are similar in nature to levelised cost estimates but with a level of detail beyond the 

typical LCoE Model because corporate or project financing, credit metrics and taxation 

constraints are co-optimised.  The Model logic is organised as follows: 
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 Security-constrained unit commitment 

The integration of the corporate and project finance and security-constrained unit 

commitment models centres around the transposition of three key variables, the generalised 

cost of entry 𝑝𝑖𝜀, unit Marginal Running Costs 𝑣𝑖 and total unit Fixed & Sunk Costs, 𝜑𝑖. 
 

𝜑𝑖 = 𝑝𝑖𝜀 − 𝑣𝑖|(𝑣𝑖 +  𝜑𝑖) ∙  𝜌1
𝑖 ≡ 𝑅1

𝑖  (1) 

 

These two parameters (i.e. unit Marginal Running Cost 𝑣𝑖 and unit Fixed and Sunk Costs  𝜑𝑖) 
are key variables in the half-hourly power system simulation model, and are used extensively 

to meet the objective function.  The derivation of entry cost 𝑝𝑖𝜀 and Marginal Running Costs 

𝑣𝑖 are defined subsequently in Eq.7-24. 

 

NEMESYS-PF orders plant capacity and dispatches the fleet of power generating units to 

satisfy security constraints and differential equilibrium conditions given specified plant 

options available.   

 

In the power system, let H be the ordered set of all half-hourly periods. 

 

𝑛 ∈ {1… |𝐻|}  ∧ ℎ𝑛 ∈ 𝐻 (2) 

 

Let E be the set of all electricity consumers in the model. 

 

𝑘 ∈ {1… |𝐸|} ∧ 𝑒𝑘 ∈ 𝐸 (3) 

 

Let C𝑘(𝑞) be the valuation that consumer segments are willing to pay for quantity q MWh of 

power.  The model assumes that demand in each period n is independent of other demand 

periods.  Let 𝑞𝑛𝑘 be the metered quantity consumed by customer 𝑒𝑛 in each period hk 

expressed in MWh. 

 

Let Ψ be the set of existing installed power plants and available augmentation options for 

each relevant scenario. 

 

𝑖 ∈ {1… |𝛹|} ∧ 𝜓𝑖 ∈ 𝛹 (4) 
 

As outlined in eq.1, let 𝜑𝑖 be the fixed operating & sunk capacity costs and 𝑣𝑖 be the marginal 

running cost of plant 𝜓𝑖 respectively.  Let 𝜌𝑖̅ be the maximum continuous rating of power 

plant 𝜓𝑖.  Power plants are subject to scheduled and forced outages.  F(𝑛, 𝑖) is the availability 

of plant 𝜓𝑖 in each period ℎ𝑛.  Annual plant availability is therefore: 

 

∑ 𝐹
|𝑃|
𝑗=0 (𝑛, 𝑖) ∀𝜓𝑖 (5) 

 

Let 𝑂𝑛,𝑖 be the quantity of power produced by plant 𝜓𝑖 in each period ℎ𝑛. 

 

Objective Function 

Optimal welfare will be reached by maximising the sum of producer and consumer surplus, 

given by the integral of the aggregate demand curve less power production costs.  The 

objective function is therefore expressed as: 

 

𝑂𝑏𝑗 = ∑ ∑ ∫ 𝐶𝑘(𝑞)𝑑𝑞
𝑒𝑘
𝑞=0

|𝐸|
𝑖=𝑘 − ∑ ∑ (𝑂𝜓𝑖 ∙ 𝑣

𝑖) − ∑ (𝑂𝜓𝑖 ∙ 𝜑
𝑖)

|𝛹|
𝜓=1

|𝛹|
𝜓=1

|𝐻|
𝑛=1

|𝐻|
𝑛=1  (6) 

 

Subject to  ∑ 𝑞𝑘𝑛 ≤
|𝐸|
𝑖=1 ∑ 𝑂𝜓𝑖

|𝛹|
𝜓=1 ^ 0 ≤ 𝑂𝑛𝑖 ≤ F(𝑛, 𝑖) ^ 0 ≤ 𝑂𝑛,𝑖 ≤ 𝜌

𝑖̅ 
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 Generalised entry cost estimates 

Costs increase annually by a forecast general inflation rate (CPI).  Prices escalate at a 

discount to CPI.  Inflation rates for revenue streams 𝜋𝑗
𝑅 and cost streams 𝜋𝑗

𝐶 in period (year) j 

are calculated as follows: 

 

𝜋𝑗
𝑅 = [1 + (

𝐶𝑃𝐼×𝛼𝑅

100
)]
𝑗
 , and 𝜋𝑗

𝐶 = [1 + (
𝐶𝑃𝐼×𝛼𝐶

100
)]
𝑗
     (7)      

 

A discounted value for 𝛼𝑅 of 0.75 reflects single factor learning rates that characterise 

generating technologies.   

 

Energy output 𝜌𝑗
𝑖  from each plant (i) in each period (j) is a key variable in driving revenue 

streams, unit fuel costs and variable Operations & Maintenance costs.  Energy output is 

calculated by reference to installed capacity 𝑘𝑖, capacity utilisation rate 𝐶𝐹𝑗
𝑖 for each period j.  

Plant auxillary losses 𝐴𝑢𝑥𝑖 arising from on-site electrical loads are deducted.   

 

𝜌𝑗
𝑖 = 𝐶𝐹𝑗

𝑖. 𝑘𝑖. (1 − 𝐴𝑢𝑥𝑖)        (8) 

 

A convergent electricity price for the ith plant (𝑝𝑖𝜀) is calculated in year one and escalated per 

eq. (7).7  Thus revenue for the ith plant in each period j is defined as follows: 

 

𝑅𝑗
𝑖 = (𝜌𝑗

𝑖 . 𝑝𝑖𝜀 . 𝜋𝑗
𝑅)         (9) 

 

As outlined above, plant marginal running costs are a key variable and used extensively in 

NEMESYS-PF.  In order to define marginal running costs, the thermal efficiency for each 

generation technology 𝜁𝑖 needs to be defined.  The constant term ‘3600’8 is divided by 𝜁𝑖 to 

convert the efficiency result from % to kJ/kWh.  This is then multiplied by raw fuel 

commodity cost 𝑓𝑖.  Variable Operations & Maintenance costs 𝑣𝑖, where relevant, are added 

which produces a pre-carbon short run marginal cost.  Under conditions of externality pricing 

𝐶𝑃𝑗, the CO2 intensity of output needs to be defined.  Plant carbon intensity 𝑔𝑖 is derived by 

multiplying the plant heat rate by combustion emissions 𝑔̇𝑖 and fugitive CO2 emissions 𝑔𝑖.  
Marginal running costs in the jth period is then calculated by the product of short run marginal 

production costs by generation output 𝜌𝑗
𝑖  and escalated at the rate of 𝜋𝑗

𝐶. 

 

𝜗𝑗
𝑖 = {[(

(3600
𝜁𝑖⁄ )

1000
. 𝑓𝑖 + 𝑣𝑖) + (𝑔𝑖. 𝐶𝑃𝑗)] . 𝜌𝑗

𝑖 . 𝜋𝑗
𝐶|𝑔𝑖 = (𝑔̇𝑖 + 𝑔𝑖).

(3600
𝜁𝑖⁄ )

1000
}  (10) 

 

Fixed Operations & Maintenance costs 𝐹𝑂𝑀𝑗
𝑖 of the plant are measured in $/MW/year of 

installed capacity 𝐹𝐶𝑖 and are multiplied by plant capacity 𝑘𝑖 and escalated.   

 

𝐹𝑂𝑀𝑗
𝑖 = 𝐹𝐶𝑖 . 𝑘𝑖. 𝜋𝑗

𝐶         (11)

    

Earnings Before Interest Tax Depreciation and Amortisation (EBITDA) in the jth period can 

therefore be defined as follows: 

 

𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖 = (𝑅𝑗

𝑖 − 𝜗𝑗
𝑖 − 𝐹𝑂𝑀𝑗

𝑖)        (12) 

    

                                                 
7

 Note that thermal plant also earns ancillary services revenue, which in the model equates to about 0.3% of electricity sales.  

This has been the historic average although as VRE increases, this can be expected to change dramatically. 
8

 The derivation of the constant term 3600 is: 1 Watt = 1 Joule per second and hence 1 Watt Hour = 3600 Joules. 
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Capital Costs (𝑋0
𝑖) for each plant i are Overnight Capital Costs and incurred in year 0.9  

Ongoing capital spending for each period j is determined as the inflated annual assumed 

capital works program. 

 

𝑥𝑗
𝑖 = 𝑐𝑗

𝑖. 𝜋𝑗
𝐶          (13) 

 

Plant capital costs 𝑋0
𝑖  give rise to tax depreciation (𝑑𝑗

𝑖) such that if the current period was 

greater than the plant life under taxation law (L), then the value is 0.  In addition, 𝑥𝑗
𝑖 also gives 

rise to tax depreciation such that: 

 

𝑑𝑗
𝑖 = (

𝑋0
𝑖

𝐿
) + (

𝑥𝑗
𝑖

𝐿+1−𝑗
)         (14) 

 

From here, taxation payable (𝜏𝑗
𝑖) at the corporate taxation rate (𝜏𝑐) is applied to 

 𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖  less Interest on Loans (𝐼𝑗

𝑖) later defined in (16), less 𝑑𝑗
𝑖.  To the extent (𝜏𝑗

𝑖) results 

in non-positive outcome, tax losses (𝐿𝑗
𝑖) are carried forward and offset against future periods. 

 

𝜏𝑗
𝑖 = 𝑀𝑎𝑥(0, ( 𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝐼𝑗
𝑖 − 𝑑𝑗

𝑖 − 𝐿𝑗−1
𝑖 ). 𝜏𝑐)      (15) 

 

𝐿𝑗
𝑖 = 𝑀𝑖𝑛(0, ( 𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝐼𝑗
𝑖 − 𝑑𝑗

𝑖 − 𝐿𝑗−1
𝑖 ). 𝜏𝑐)      (16) 

 

The debt financing model computes interest and principal repayments on different debt 

facilities depending on the type, structure and tenor of tranches.  There are two types of debt 

facilities – (a) corporate facilities (i.e. balance-sheet financings) and (2) project financings.  

Debt structures include semi-permanent amortising facilities and bullet facilities.   

 

Corporate facilities involve 3- and 7-year money raised with an implied ‘BBB’ credit rating.  

With project financings, two facilities are modelled.  The first facility is nominally a 3-year 

bullet requiring interest-only payments after which it is refinanced with consecutive 

amortising facilities and fully amortised over a 25-year period.  The second facility 

commences with a tenor of 7 years as an amortising facility, again set within a semi-

permanent structure with a nominal repayment term of 25 years.  The decision tree for the two 

tranches of debt is the same, so for the Debt Tranche where 𝑇 = 1 or 2, the calculation is as 

follows: 

 

𝑖𝑓 𝑗 {
> 1, 𝐷𝑇𝑗

𝑖 = 𝐷𝑇𝑗−1
𝑖 − 𝑃𝑗−1

𝑖

= 1,𝐷𝑇1
𝑖 = 𝐷0

𝑖 . 𝑆                  
        (17) 

 

𝐷0
𝑖  refers to the total amount of debt used in the project.  The split (S) of the debt between 

each facility refers to the manner in which debt is apportioned to each tranche.  In the model, 

35% of debt is assigned to Tranche 1 and the remainder to Tranche 2.  Principal 𝑃𝑗−1
𝑖  refers to 

the amount of principal repayment for tranche T in period j and is calculated as an annuity: 

 

𝑃𝑗
𝑖 = (𝐷𝑇𝑗

𝑖 [
1−(1+(𝑅𝑇

𝑧+𝐶𝑇
𝑧))−𝑛

𝑅𝑇
𝑧+𝐶𝑇

𝑧 ]⁄ |𝑧 {
= 𝑉𝐼
= 𝑃𝐹

)      (18) 

 

In (18), 𝑅𝑇 is the relevant interest rate swap (3yrs or 7yrs) and 𝐶𝑇 is the credit spread or 

margin relevant to the issued Debt Tranche.  The relevant interest payment in the jth period 

(𝐼𝑗
𝑖) is calculated as the product of the (fixed) interest rate on the loan by the amount of loan 

outstanding: 

                                                 
9

 The model is capable of dealing with multi-period construction programs such that 𝑋𝑗
𝑖 = −∑ 𝐶𝑘 . (1 + 𝐾𝑒)

−𝑘 .𝑁
𝑘=1   However, for 

the present exercise, all plant capital costs are ‘Overnight Capital Costs’ (i.e. as if the plant were purchased at the completion of 
construction) and therefore include an allowance for capitalised interest during construction.  
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𝐼𝑗
𝑖 = 𝐷𝑇𝑗

𝑖 × (𝑅𝑇
𝑧 + 𝐶𝑇

𝑧)         (19) 

 

Total Debt outstanding 𝐷𝑗
𝑖, total Interest 𝐼𝑗

𝑖  and total Principle 𝑃𝑗
𝑖 for the ith plant is calculated 

as the sum of the above components for the two debt tranches in time j.  For clarity, Loan 

Drawings are equal to 𝐷0
𝑖  in year 1 as part of the initial financing and are otherwise 0.   

 

One of the key calculations is the initial derivation of 𝐷0
𝑖 .  This is determined by the product 

of the gearing level and the Overnight Capital Cost (𝑋0
𝑖).  Gearing levels are formed by 

applying a cash flow constraint based on credit metrics applied by project banks and capital 

markets.  The variable 𝛾 in the PF Model relates specifically to the legal structure of the 

business and the credible capital structure achievable.  The two relevant legal structures are 

Vertically Integrated (VI) merchant utilities (using ‘BBB’ rated corporate facilities) and 

Inpdependent Power Producers using Project Finance (PF).  

 

𝑖𝑓 𝛾

{
 
 

 
        = 𝑉𝐼,𝑀𝑖𝑛 (

𝐹𝐹𝑂𝑗
𝑖

𝐼𝑗
𝑖  ) ≥ 𝛿𝑗

𝑉𝐼 ^  𝑀𝑖𝑛 ( 
𝐹𝐹𝑂𝑗

𝑖

𝐷𝑗
𝑖  ) ≥ 𝜔𝑗

𝑉𝐼∀ 𝑗  |𝐹𝐹𝑂𝑗
𝑖 = (𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖 − 𝑥𝑗
𝑖)                                                         

= 𝑃𝐹,𝑀𝑖𝑛(𝐷𝑆𝐶𝑅𝑗
𝑖 , 𝐿𝐿𝐶𝑅𝑗

𝑖) ≥ 𝛿𝑗
𝑃𝐹 , ∀ 𝑗  | 𝐷𝑆𝐶𝑅𝑗 =

(𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖−𝑥𝑗

𝑖−𝜏𝑗
𝑖)

𝑃𝑗
𝑖+𝐼𝑗

𝑖 | 𝐿𝐿𝐶𝑅𝑗 =
∑ [(𝐸𝐵𝐼𝑇𝐷𝐴𝑗

𝑖−𝑥𝑗
𝑖−𝜏𝑗

𝑖).(1+𝐾𝑑)
−𝑗]𝑁

𝑗=1

𝐷𝑗
𝑖   

 (20)

     

The variables 𝛿𝑗
𝑉𝐼and 𝜔𝑗

𝑉𝐼 are exogenously determined by credit rating agencies.  Values for 

𝛿𝑗
𝑃𝐹 are exogenously determined by project banks and depend on technology (i.e. thermal vs. 

renewable) and the extent of energy market exposure, that is whether a Power Purchase 

Agreement exists or not.  For clarity, 𝐹𝐹𝑂𝑗
𝑖 is ‘Funds From Operations’ while 𝐷𝑆𝐶𝑅𝑗

𝑖 and 

𝐿𝐿𝐶𝑅𝑗
𝑖 are the Debt Service Cover Ratio and Loan Life Cover Ratios. Debt drawn is: 

 

𝐷0
𝑖
= 𝑋0

𝑖 − ∑ [𝐸𝐵𝐼𝑇𝐷𝐴𝑗
𝑖 − 𝐼𝑗

𝑖
−𝑃𝑗

𝑖
− 𝜏𝑗

𝑖] . (1 + 𝐾𝑒)
−(𝑗)𝑁

𝑗=1 − ∑ 𝑥𝑗
𝑖 . (1 + 𝐾𝑒)

−(𝑗)𝑁
𝑗=1        (21) 

 

At this point, all of the necessary conditions exist to produce estimates of generalised long run 

marginal costs of the various power generation technologies.  The relevant equation to solve 

for the price (𝑝𝑖𝜀) given expected equity returns (𝐾𝑒) whilst simultaneously meeting the 

binding constraints of 𝛿𝑗
𝑉𝐼 and 𝜔𝑗

𝑉𝐼 or 𝛿𝑗
𝑃𝐹given the relevant business combinations.  The 

primary objective is to expand every term which contains 𝑝𝑖𝜀.  Expansion of the EBITDA and 

Tax terms is as follows: 

 

−𝑋0
𝑖 + ∑ [(𝑝𝑖𝜀. 𝜌𝑗

𝑖 . 𝜋𝑗
𝑅) − 𝜗𝑗

𝑖 − 𝐹𝑂𝑀𝑗
𝑖 − 𝐼𝑗

𝑖 − 𝑃𝑗
𝑖 − ((𝑝𝑖𝜀. 𝜌𝑗

𝑖 . 𝜋𝑗
𝑅) − 𝜗𝑗

𝑖 − 𝐹𝑂𝑀𝑗
𝑖 − 𝐼𝑗

𝑖 − 𝑑𝑗
𝑖 − 𝐿𝑗−1

𝑖 ) . 𝜏𝑐] . (1 +
𝑁
𝑗=1

𝐾𝑒)
−(𝑗) − ∑ 𝑥𝑗

𝑖 . (1 + 𝐾𝑒)
−(𝑗) − 𝐷0

𝑖𝑁
𝑗=1          (22) 

 

The terms are then rearranged such that only the 𝑝𝑖𝜀 term is on the left-hand side of the 

equation: 

 

Let 𝐼𝑅𝑅 ≡  𝐾𝑒   

 

∑ (1 − 𝜏𝑐).𝑝𝑖𝜀. 𝜌𝑗
𝑖 . 𝜋𝑗

𝑅. (1 + 𝐾𝑒)
−(𝑗)𝑁

𝑗=1 =  𝑋0
𝑖 −∑ [−(1 − 𝜏𝑐). 𝜗𝑗

𝑖 − (1 − 𝜏𝑐). 𝐹𝑂𝑀𝑗
𝑖 − (1 − 𝜏𝑐). (𝐼𝑗

𝑖
) −𝑃𝑗

𝑖
+𝑁

𝑗=1

𝜏𝑐 . 𝑑𝑗
𝑖 + 𝜏𝑐𝐿𝑗−1

𝑖 ). (1 + 𝐾𝑒)
−(𝑗)] + ∑ 𝑥𝑗

𝑖 . (1 + 𝐾𝑒)
−(𝑗) +𝐷0

𝑖𝑁
𝑗=1       (23) 

 

The model then solves for 𝑃𝜀 such that: 

𝑝𝑖𝜀 = 
𝑋0
𝑖

∑ (1−𝜏𝑐).𝑃
𝜀.𝜌𝑗

𝑖 .𝜋
𝑗

𝑅
.(1+𝐾𝑒)−

(𝑗)𝑁
𝑗=1

+

∑ ((1−𝜏𝑐).𝜗𝑗
𝑖+(1−𝜏𝑐).𝐹𝑂𝑀𝑗

𝑖+(1−𝜏𝑐).(𝐼𝑗
𝑖)+𝑃𝑗

𝑖−𝜏𝑐.𝑑𝑗
𝑖−𝜏𝑐𝐿𝑗−1

𝑖 ).(1+𝐾𝑒)
−(𝑗))𝑁

𝑗=1

∑ (1−𝜏𝑐).𝑝𝑖𝜀.
𝑁
𝑗=1 𝜌𝑗

𝑖 .𝜋
𝑗

𝑅
.(1+𝐾𝑒)−

(𝑗) 
+

∑ 𝑥𝑗
𝑖 .(1+𝐾𝑒)

−(𝑗)𝑁
𝑗=1 +𝐷0

𝑖

∑ (1−𝜏𝑐).𝑝𝑖𝜀.𝜌𝑗
𝑖 .𝜋

𝑗

𝑅
.(1+𝐾𝑒)−

(𝑗)𝑁
𝑗=1

 

           (24) 
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5. Model results: implications of CfDs on the systemic security of the energy market 

Salient features of the present modelling exercise are as follows.   

 

First, there are five generation plant technologies available for deployment in the power 

system, including conventional (incumbent) coal plant, Combined Cycle Gas Turbines 

(CCGT), Open Cycle Gas Turbines (OCGT), and VRE plant, specifically wind and Solar PV.  

Incumbent coal plant and incumbent and new entrant CCGT & OCGT plant are all modelled 

as Balance Sheet-financings (gearing ca.30-36% to maintain BBB credit metrics).   In 

contrast, all VRE plant in any scenario are assumed to be Project Financed (ca.65-70% debt) 

and underpinned by government-initiated CfDs.  Table 1 sets out the technology assumptions 

and Table 2 outlines all relevant corporate and project financing assumptions and when 

combined, provide the inputs necessary to produce generalised estimates of Average Total 

Cost (including a normal profit). Crucially, there is no ‘two-step pricing10’ assumed with VRE 

plant – a strict annualised cost/price is used in all modelling.  

 
 Technology Assumptions 

 
 

 Corporate Finance Assumptions 

 
 

Second, the model has been populated with half-hour load data (using Queensland data from 

2016) and from this, multiple scenarios are simulated with a demand elasticity of -0.10 

applied to all cases. To keep modelling results tractable, the power system is modelled as a 

single, non-interconnected regional energy market.  Furthermore, the level of government-

initiated CfDs are exogenously determined and designed to achieve a certain VRE market 

share.  A base scenario is calibrated with 0% VRE plant (i.e. the power system commences as 

                                                 
10 Recent NEM transactions for renewables in the $50s/MWh appear to reflect either of i). unique sites with excellent resource 

and network connection characteristics; or ii). more commonly, what Simshauser & Gilmore (2018) have labelled “two-step 

pricing”.  With two-step pricing, a low cost 15-year PPA is written is written in the first period, and in the second period from 
project years 16-30 elevated prices are assumed to prevail. The combination of the low contracted PPA prices (years 1-15) and 

high expected future spot prices (years 15-30) appear to collectively meet threshold equity returns.  The implication of two-step 

pricing is that Average Total Cost of such projects is higher than recent PPA pricing suggests.  Based on our input assumptions, 
we find the Average Total Cost, levelized over 30 years, to be $62.50/MWh.    

Technology Capex
Installed 

Capacity

Generating 

Units

Unit Heat 

Rate

Unit Fuel 

Cost

Capacity 

Factor

Fixed 

O&M Cost

Variable 

O&M

Capital 

Works

Auxillary 

Load

($/kW) (MW) (MW) (kJ/kWh) ($/GJ) (%) ($/MW/a) ($/MWh) (%) (%)

  Incumbent Coal 1,486       1,000       2              10,000     3.00         50-90% 50,500     4.00         0.25% 7.1%

  CCGT 1,500       400          1              6,930       8.50         30-70% 10,000     7.00         0.05% 3.0%

  OCGT 1,050       500          2              11,300     9.00         1-10% 7,000       10.00       0.05% 1.0%

  Wind 1,975       450          118          -           -           39% 45,000     3.00         0.05% 0.0%

  Solar PV 1,550       100          -           -           -           26% 30,000     -           0.05% 0.0%

Coal & Gas Wind & Solar

Debt Sizing Constraints Debt Sizing Constraints

  - FFO/I (times) 5   - DSCR (times) 1.35

  - FFO/D (times) 3   - LLCR (times) 1.35

  - Gearing Limit (%) 40.0   - Gearing Limit (%) 70.0

  - Default (times) 1.10

Corporate 'BBB' Bond Issue Project Finance Facilities - Tenor

  - Tranche 1 (Bullet) (Yrs) 5   - Tranche 1 (Bullet) (Yrs) 5

  - Tranche 1 Refi (Yrs) 13-20   - Tranche 1 Refi (Yrs) 13-20

  - Tranche 2 (Amort.) (Yrs) 7   - Tranche 2 (Amort.) (Yrs) 7

  - Notional amortisation (Yrs) 18-25   - Notional amortisation (Yrs) 18-25

BBB' Bond Pricing Project Finance Facilities - Pricing

  - Tranche 1 (%) 3.60   - Tranche 1 Swap (%) 2.55

  - Tranche 1 Margin (bps) 105   - Tranche 1 Margin (bps) 200

  - Tranche 2 (%) 3.97   - Tranche 2 Swap (%) 2.68

  - Tranche 2 Margin (bps) 129   - Tranche 2 Margin (bps) 220

  - Tranche 1 (%) 3.60   - Tranche 1 (%) 4.55

  - Tranche 2 (%) 3.97   - Tranche 2 (%) 4.88

  - Tranche 1&2 Refi (%) 3.97   - Tranche 1&2 Refi (%) 4.88

  - Post Tax Equity Coal (%) 12.0   - Post Tax Equity (%) 10.0

  - Post Tax Equity Gas (%) 12.0



 Page 13 

a thermal system with zero renewable plant), with scenarios spanning up to 40% VRE market 

share. 

 

Consistent with Eq.6, the objective of the power system model is to minimise resource costs 

and maximise consumer welfare whilst meeting a reliability constraint of no more than 

0.002% Unserved Energy.  An overview of model inputs and certain model outputs which 

assist in understanding subsequent Results for the two bookend scenarios (i.e. 0% and 40%) 

are presented in Table 3.   

 
 Overview of market modelling results 

 
 

Note from Table 3 that the single-region power system has an initial final energy demand of 

54,718GWh and maximum demand of 9,118MW.  The opening plant stock is dominated by 

6720MW of coal and in order to meet the reliability constraint (given plant outages) a reserve 

plant margin of ~11% is necessary.  The power system has an average unit cost of 

$79.27/MWh and CO2 emissions totalling 53.4Mt pa. 

 

 Model Results – plant cost estimates 

The generalised Average Total Cost of incumbent and new entrant plant produced by the 

Model are presented in Figure 2.  These data presented are essentially a high-resolution LCoE 

incorporating debt-finance and taxation variables.  For example, in Figure 2 Incumbent Coal 

plant has a generalised Average Total Cost of $64/MWh comprising Fuel ($30/MWh), O&M 

($8.71/MWh). Debt ($4.17/MWh), Taxation ($5.44/MWh) and Equity ($15.74/MWh).  Note 

that the OCGT cost structure focuses on the ‘carrying cost’ of the capacity (at $14/MWh), and 

has a marginal running cost of $123/MWh (including Variable O&M).  The data in Figure 2 

are based on (static) capacity factors, but in NEMESYS-PF, plant costs arise on a dynamic 

basis with capacity factors11 determined by market demand.   
  

                                                 
11 VRE plant are generally priority dispatched in the model, but are subject to a minimum load constraint which binds as VRE 
market share approaches 40% or when coal plant fails to adjust and exit. 

VRE Market Share 0% 40% Chg

Energy Demand (GWh) 54,718     55,048     330          

Maximum Demand (MW) 9,118       9,277       159          

Demand Elasticity -0.10 

Reserve Margin (%) 11% 11% -           

Plant Portfolio

 - Coal (MW) 6,720       4,200       -2,520 

 - CCGT (MW) 400          1,200       800

 - OCGT (MW) 3,250       3,750       500

 - Wind (MW) 0              3,797       3,797

 - Solar (MW) 0              2,711       2,711

Supply of Primary Hedges (MW) 9,100       7,900       -1,200 

System Cost ($/MWh) $79.33 $83.04 $3.70

Underlying System Price ($/MWh) $74.15 $62.95 -$11.20

CO2 Emissions (Mt) 53.4         30.9         -22.4 

Imputed Carbon Price ($/t) n/a $20 - $25/t

Unserved Energy (%) 0.001% 0.000% -           
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 Generalised entry costs 

 
 Model Results – power system spot market  

Recall that the objective of the current exercise is to analyse the implications of a wide-

ranging government-initiated CfD program on the functioning of the hedge market.  To model 

a wide-ranging CfD policy, the installed capacity of wind and solar PV is exogenously 

increased such that the market share of VRE plant progressively rises to 40%.  CfD’s are 

assumed to be designed to minimise LCoE as this typically defines such programs, and as a 

result VRE technologies (i.e. wind and solar PV) dominate entry.   

 

Given perfect entry, exit, exogenously determined levels of government-initiated CfD’s to 

drive VRE market share, these are implicitly dynamic long-run scenarios measured by the 

time taken for the capital stock to adjust, rather than specifying a notional time period per se 

(see Hirth, 2013; Simshauser, 2018).  As a result, the thermal plant stock is assumed to adjust 

perfectly in that VRE plant entry is accommodated by coal exit (‘to make room’ and in line 

with coal plant financial distress arising from forced entry), while CCGT and OCGT plant 

enter to ensure reliability constraints are met given the intermittent nature of wind and solar 

PV. 

 

Figure 3 presents the dynamic supply-side adjustment given the CfD policy objective – in this 

instance a 40% VRE market share.  Notice in Figure 3 that coal plant capacity (bar series, 

LHS axis) reduces from 6720MW to 4200MW.  Coal-fired output (line series, RHS axis) 

reduces from about 50,000GWh to about 30,000GWh.  Gas-fired plant increases; CCGT 

capacity commences at 400MW and rises to 1200MW while OCGT capacity commences at 

3250MW and rises by a further 500MW.  Consistent with the CfD policy objective, VRE 

plant increases from 0-40% market share with 2700MW of solar (15% market share) and 

3800MW of wind (25% market share).   
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 Power system generation (LHS) and plant capacity (RHS) 

 
 

Given the model inputs outlined in Tables 1-3 and perfect plant entry and exit, NEMESYS-PF 

model results confirm the CfD policy objective can be met with the power system’s spot 

market producing tractable results.  However, what such modelling fails to reveal is a severe 

structural shortage emerging in the power system’s financial market, viz. the forward market 

for hedge contracts. 

 

 Model Results – power system financial market 

Identifying the supply of hedge contracts within a NEM region is inherently difficult because 

in a well-functioning power system financial market, there are cross-border trades, and, more 

than just asset-backed portfolio managers on the sell-side. Proprietary and non-asset-backed 

traders can add very substantially to market depth and liquidity.12  The anonymity of trade 

makes this notoriously difficult to model, however. 

 

Modelling the risk of structural shortages in a single region is an easier task.  The reason for 

this is that proprietary traders, who add to forward market liquidity, ‘do not appear out of thin 

air’.  A necessary condition for proprietary trading is an inherent level of forward market 

liquidity to begin with.  To be sure, if a market is illiquid, non-asset-backed traders cannot be 

relied upon to enter and make-up any shortfall.  The reason for this is axiomatic; as Goldstein 

& Hotchkiss (2018) explain, holding-times of various securities is strongly correlated to 

market liquidity.  That is, in an illiquid market, traders can be expected to close out positions, 

not open new positions.  The reason proprietary traders exit illiquid markets or markets 

characterised by sharply falling liquidity is to avoid being caught with unwanted inventory.  

 

Consequently, understanding the total primary supply (i.e. “primary issuance”) of asset-

backed forward contracts provides a basis for identifying inherent market liquidity.  If the 

underlying supply or primary issuance of Swaps and Caps (nominally represented by coal and 

gas plant respectively) are sufficient relative to maximum demand, then the conditions 

necessary for trade at “multiples of physical” would appear to exist.  Conversely, if an 

absolute shortage of primary issuance exists, then market liquidity is likely to remain below 

efficient levels (i.e. total turnover less than 100%, thus implying some positions are virtually 

“unhedgable”) and proprietary trade is unlikely to materially alter suboptimal liquidity for the 

reasons outlined above.  

 

In the analysis that follows, the plant stock outlined in Figure 3 is separated into three rival 

generator portfolios comprising two large firms (~3750MW each) and one medium-sized firm 

                                                 
12 The risk management of market exposures also arises from activity in tangential markets such as the market for weather 
derivatives.  Such trade is not considered in this analysis. 
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(~2850MW).  In the NEMESYS-PF model, individual generation plant availability is 

determined according to a stochastic binomial distribution with half-hour resolution given 

plant forced outage rates of ~5 - 6%. These generating unit-level data are then collated and 

assembled into joint probability duration curves for each of the three generator portfolios, and 

from there a 90th percentile Confidence Limit was identified as the maximum supply of asset-

backed hedges, in a manner consistent with the methodology in Simshauser (2018).  The 

modelled results that emerge are in turn consistent with the applied hedge market research 

findings contained in Anderson et al. (2007).   

 

Results for Generation Portfolio #1 and Generation Portfolio #3 are presented in Figure 4.  

Notice that for the 3750MW Generation Portfolio #1 (and by implication, Generation 

Portfolio #2 which has an identical plant portfolio) the total potential supply of hedges at the 

90th percentile is about 3300MW, whereas for the 2830MW Generation Portfolio #3 the total 

potential supply of hedges is about 2400MW.   

 Primary supply of hedge contracts at 0% VRE Market Share 

 
 

In the model, as VRE plant enter via government-initiated CfDs, various coal generating units 

ultimately exit due to merit-order effects and financial distress.  As coal plant exit, some level 

of gas-fired generation plant enters but as Figure 3 indicates, the overall coal and gas-fired 

fleet form a shrinking resource.  Consequently, when the modelling process is undertaken for 

each of the three Generation Portfolios on a dynamic basis (i.e. as outlined in Figure 3 for 

VRE=0%..40%), primary hedge supply begins to contract, and this accelerates as VRE plant 

entry approaches 40%.  This dynamic analysis is presented in Figure 5 and reveals a growing 

structural shortage of primary issuance hedge contract capacity: 
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 Primary supply of hedge contracts vs Maximum Demand (0-40% VRE) 

 
 

In Figure 5, the x-axis measures VRE plant market share, which has been exclusively 

facilitated by government-initiated CfDs (i.e. there are no on-market PPAs).  The solid black 

line series depicts Maximum Demand given a demand elasticity of -0.10, and the solid red 

line series presents the combined primary hedge contract supply given VRE market shares 

from 0-40%.  The gap between the black and red lines highlights the magnitude of any hedge 

shortfall, which is also represented by solid blue line series – culminating in a hedge market 

shortfall of almost 1400MW or 15% of final market demand at 40% Renewable Market 

Share.  Note that even with a 5% Renewable Market Share , the impact of government-

initiated CfDs produces a hedge shortfall if the thermal plant stock adjusts perfectly. 

 

In Figure 5, the dynamic change in the conventional coal and gas plant stock is also captured 

by the area chart (grey for coal, dark blue for CCGT plant, and light blue for OCGT plant – 

and are essentially a reproduction of the data in Figure 3).  In response to the wide-ranging 

policy of government-initiated CfDs, coal plant contracts from 6700MW to 4200MW, while 

CCGT & OCGT plant capacity expands by 800MW and 500MW, respectively. Note that 

overall there is a net loss of dispatchable plant, and when combined with the extraction of 

hedge contract capacity from government-initiated CfDs, combines and drives the shortage of 

primary issuance hedge contracts. 

 

6. Policy implications of government-initiated CfDs 

Are such contract shortages inevitable in a world of rising VRE market share?  The short 

answer is no. The results in Figure 5 would look entirely different if VRE plant was able to 

provide its output, inspite of intermittency, into the hedge market by way of run-of-plant 

PPAs.  Even with optimal levels of thermal plant exit and rising levels of VRE, the market 

may operate without concern because participants and portfolio traders are able to 

synthetically or physically reconstruct firm positions by combining run-of-plant PPAs with 

dispatchable plant, and rely on gains from exchange on a risk-adjusted basis. 

 

But modelling in Section 5 explicitly rules out run-of-plant PPAs – CfDs make on-market 

investment risky.  Instead Section 5 modelling assumes that VRE plant enters exclusively by 

way of government-initiated CfDs.  Crucially, VRE projects cannot sell their output twice.  

Once a government initiates a wide-ranging program of CfDs, it will have the effect of adding 

capacity to the spot market which in the short run will lower prices and force coal plant out, 

but in the long run will extract 100% of the CfD plant output from the power system’s 

financial market.   
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The quantitative analysis in Section 5 and Figure 5 in particular revealed that pursuing a 

wide-ranging program of government-initiated CfDs is likely to produce an ‘unstable zone’ in 

the hedge market.  That is, while the spot market is consistently able to reach equilibrium for 

any level of VRE output up to 40% market share (given certain dispatch constraints), with 

government-initiated CfDs the forward hedge market becomes increasingly unstable and 

intractable as thermal plant exits and adjusts.   

 

This is not a short run phenomenon.  It is a long run problem (Hirth, 2013; Simshauser, 2018).  

If thermal plant fails to exit or thermal plant capacity remains above efficient levels, shortages 

in the hedge market may not appear.  Indeed, in the short run government-initiated CfDs may 

well result in consumers benefiting from a surplus of hedge contract capacity (i.e. if thermal 

plant does not exit they are still available to supply hedge contracts), and short-run prices will 

be lower reflecting merit-order effects of adding VRE plant to the power system. 

 

However, and to be clear, as coal plant exits the opposite occurs.  Thermal plant must exit due 

to inevitable financial distress caused by VRE plant entry at-scale.  And the exit of coal plant 

causes spot prices to rise once again.  Furthermore, in such a scenario spot prices will rise just 

as hedge contract shortages appear; thus consumers would be unable to hedge against the very 

reason for hedging in the first place – viz. to hedge against the risk of sharply rising wholesale 

market prices.  And in the modelling results in Section 5, the reason consumers cannot fully 

hedge in forward markets is because hedge capacity has been extracted through a wide-

ranging program of government-initiated CfDs. 

 

Hedge shortages in energy-only markets with a high VoLL are far more than theory.  The 

South Australian (SA) region of the NEM was known to enter an episode of hedge contract 

shortages (i.e. hedge contracts < 100% of physical) in 2016 and 2017 when the final SA coal 

plant exited (i.e. Northern Power Station).  The surprising sophistication, and level of energy 

market literacy now displayed by large Industrial customers in South Australia explains how 

the SA market adjusted.  When hedge contract prices and premiums rose sharply, contract 

volumes and premiums were allocated across the SA power system given segment-level 

elasticities of demand.  That is, prices in the residential consumer segment rose in line with 

elevated contract premiums.  Through discussions with senior NEM policymakers and 

various Industrial customers in SA, it would appear that hedge market shortages were largely 

absorbed by Industrial customers, with a typical strategy being to secure some minimum level 

of hedging, and run the balance of manufacturing load to the spot market (while keeping a 

close eye on exposed load to pre-dispatch prices). 

 

A wide-ranging program of government-initiated CfDs may adversely impact the residential 

and SME business market, however.  The effect of extracting capacity from the hedge market 

will, in time, weigh heavily on retail competition.  Large vertical retailers will continue to 

manage their position using a combination of physical plant and forward markets – and they 

generally have the financial capacity to allocate resources seamlessly between the two.  But 

2nd tier non-integrated retailers do not have the same financial resources and may in the event 

be inadvertently foreclosed by a wide-ranging program of government-initiated CfDs as 

financial market liquidity deteriorates.  At this point, retail-level consumer pricing can also be 

expected to be adversely impacted.  

 

At the extreme, unhedgable positions may introduce risks to the stability and systemic 

security of power market financial systems more generally.  If a sufficiently large utility 

experienced financial distress due to excessive exposure to VoLL events because they were 

not able to allocate resources between physical plant and forward markets quickly enough, an 

unexpected financial distress event could lead to cascading failures across the power market 

economy; unlike Australian financial institutions which can access lender of last resort 

facilities with the Commonwealth Government, there is no centrally organised financial 

backstop in the NEM. 
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7. Conclusion 

Used carefully, CfDs present policymakers with a reliable tool which can be used to 

overcome an array of market failures, including those associated with missing or incomplete 

markets (including emergency plant for security of supply reasons, certain positive or 

negative externalities including CO2 emissions, R&D and externalities arising from first-of-a-

kind commercialisation investments).  In the NEM, CfDs have been used effectively by State 

Governments to ‘prime’ emerging markets, navigate Commonwealth Government policy 

discontinuity, with material on-market transactions following.  The Australian Capital 

Territory government CfDs pioneered nominal-price transactions, the Queensland 

Government’s CfDs led to more than 1900MW of follow-on solar PV projects, and the SA 

Government’s semi-CfD for battery storage in response to an exit-induced Resource 

Adequacy market failure has since resulted in more than a dozen battery projects either under 

active development or commitment.  From a project execution perspective, the effectiveness 

of CfDs are unquestionable.   

 

But government-initiated CfDs must be used judiciously because they introduce ‘quasi-

market participants’ who frequently do not respond to spot market signals per se, and do not 

participate in forward markets at all.  Quasi-market participants are indifferent or substantially 

immune from future outcomes in spot and forward markets.  This can result in plant entry that 

is poorly timed, poorly sized, poorly located and above all, poorly motivated to respond to the 

electricity and Frequency Control Ancillary Service spot price signals which keep the power 

system operating in a stable manner.   

 

CfD plant also benefit from otherwise unachievable credit metrics owing to a taxpayer-

financed and credit-wrapped CfD instrument – with the risks transferred to taxpayers.  A 

wide-ranging program of government-initiated CfDs can therefore be expected to crowd-out 

on-market rival merchant/bilateral investments, and adversely impact prior market 

transactions and capital-heavy investments legitimately made in good faith by incumbent and 

independent generator and retailers in response to market (and other policy) signals.  Used 

excessively, CfDs could damage investor market confidence in the NEM and at the extreme 

lead to a situation whereby only CfD projects become bankable.   

 

The creation of the NEM was founded from the ‘Hilmer Competition Reforms’ of the 1990s, 

which amongst other things outlined the conditions by which government trading enterprises 

could compete with private firms on a level playing field.  This required government owners 

to adjust borrowing rates of their trading enterprises to levels equivalent in the private-sector 

(with any premiums charged being returned to taxpayers) and creating a tax equivalence 

regime.  The result was highly successful with more than $100 billion of private and public 

funded invested into the NEM and its network infrastructure.   

 

Economics does not provide a basis for systematic conclusions on matters of equity and fairness – 

but introducing a wave of quasi-market-participants through government-wrapped CfDs, 

which have the effect of short- to -medium-run damage to recent past decisions of incumbent- 

and independent (including renewable-) market participants, does seem to introduce a 

legitimate query vis-à-vis procedural fairness. 

 

If there is an upside to the present analysis, it is that the number of alternate policy 

instruments available to government to achieve policy objectives has expanded very rapidly 

(Peters 2002).  A wide array of policy instruments exist to deal with the market failures which 

CfDs are intended to remedy; renewable energy policy objectives can be achieved by an 

emissions intensity scheme or well-designed Renewable Portfolio Standards13; the need for 

emergency capacity can be (and in the NEM recently has been) dealt with by establishing 

minimum exit notification periods for plant intending to exit the system; Resource Adequacy 

(i.e. adequate plant capacity including an appropriate reserve plant margin) can be maintained 

                                                 
13 Australia’s 20% Renewable Energy Target was lifted from 2% to 20% without considering the implications on system 
operations.  See for example Buckman & Diesendorf (2010). 
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by ensuring the level of VoLL remains appropriate or by pursuing reliability options if this 

becomes necessary.  All of these options work with the energy-only market design, including 

the forward market for contracts.  CfDs, it would seem, ultimately work against it. 

 

Throughout most of 2018, Australian policymakers developed a policy known as the National 

Energy Guarantee which had two embedded policy mechanisms for energy retailers to 

comply with; (i) an emissions obligation which was consistent with Australia’s international 

CO2 commitments under the Paris Agreement, and (ii) a reliability obligation which was 

consistent with the NEM’s reliability criteria and was designed to ensure Resource Adequacy.  

The former was designed to encourage hedge contract activity with new renewable projects, 

and the latter was designed to be acquitted via ensuring adequate forward contracts were 

committed – both mechanisms were thus designed to add to liquidty rather than detract from 

it.   

 

In contrast, as the quantitative results and analysis in this article explained, a wide-ranging 

program of government-initiated CfDs can be expected to impair market efficiency.   While 

adding to demand-side liquidity, CfDs subtract from supply-side liquidity and this matters in 

loosely-interconnected energy markets because as coal plant exits, primary issuance hedge 

contract shortages become predictable.  Shortages in the forward markets may harm consumer 

welfare by raising contract premiums – the primary input into consumer tariffs – and by 

forcing the most price-elastic Industrial customers into accepting spot market exposures, 

which at best disrupts manufacturing efficiency.  Further, CfD-driven hedge market shortages 

may unintentionally foreclose non-integrated 2nd tier retailers – deeming such a program of 

government-initiated CfDs to be (unintentionally) anti-competitive.  Consequently, the 

National Energy Guarantee or an equivalent suite of policies seems a better place for 

policymakers to focus on. 
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